The stability of collocation methods for higher-order Volterra integro-differential equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The stability of collocation methods for higher-order Volterra integro-differential equations

The numerical stability of the polynomial spline collocation method for general Volterra integro-differential equation is being considered. The convergence and stability of the newmethod are given and the efficiency of the newmethod is illustrated by examples. We also proved the conjecture suggested by Danciu in 1997 on the stability of the polynomial spline collocation method for the higher-or...

متن کامل

Fuzzy collocation methods for second- order fuzzy Abel-Volterra integro-differential equations

In this paper we intend to offer new numerical methods to solve the second-order fuzzy Abel-Volterraintegro-differential equations under the generalized $H$-differentiability. The existence and uniqueness of thesolution and convergence of the proposed methods are proved in details and the efficiency of the methods is illustrated through a numerical example.

متن کامل

Multistep collocation methods for Volterra integro-differential equations

Keywords: Volterra integro-differential equations Multistep collocation Superconvergence Stability a b s t r a c t Multistep collocation methods for Volterra integro-differential equations are derived and analyzed. They increase the order of convergence of classical one-step collocation methods, at the same computational cost. The numerical stability analysis is carried out and classes of A 0-s...

متن کامل

SPLINE COLLOCATION FOR FREDHOLM AND VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

A collocation procedure is developed for the linear and nonlinear Fredholm and Volterraintegro-differential equations, using the globally defined B-spline and auxiliary basis functions.The solutionis collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula.The error analysis of proposed numerical method is studied theoretically. Numerical results are given toil...

متن کامل

Convergence Analysis of the Legendre Spectral Collocation Methods for Second Order Volterra Integro-Differential Equations

A class of numerical methods is developed for second order Volterra integrodifferential equations by using a Legendre spectral approach. We provide a rigorous error analysis for the proposed methods, which shows that the numerical errors decay exponentially in the L∞-norm and L-norm. Numerical examples illustrate the convergence and effectiveness of the numerical methods. AMS subject classifica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2005

ISSN: 0161-1712,1687-0425

DOI: 10.1155/ijmms.2005.3075